Detection and classification of large-scale ground motion from remote sensing data

TECHNISCHE UNIVERSITÄT DARMSTADT

A case study in Hesse, Germany

M. Rudolf¹, **K. Krzepek²**, **T. Treffeisen³**, **B. Homuth⁴**, **D. Iwaszczuk²**, **A. Henk¹** ¹TU Darmstadt, Engineering Geology, ²TU Darmstadt, Geodesy Remote Sensing and Image Analysis, ³Arcadis Germany GmbH, ⁴Hessian Agency for Nature Conservation, Environment and Geology

28.04.2023 | Umwelt 4.0 - Cluster I | Use of digital terrain models and Copernicus data | Rudolf et al. | 1

Motivation

Landslide activity and surface deformation in Hesse, Germany

Image: hlnug.de

Motivation Landslide activity and surface deformation in Hesse, Germany

Image: hlnug.de

- Detect regions affected by ground movement using geodetic data
 - Subsidence, uplift, soil flow, landslides

Motivation

Landslide activity and surface deformation in Hesse, Germany

- Detect regions affected by ground movement using geodetic data
 - Subsidence, uplift, soil flow, landslides
- Various datasets:
 - Topographical (HVBG)
 - Geological (HLNUG)
 - Lidar scans in '14, '19, '21 (HVBG)
 - 1 m DEMs, DTMs and differences
 - InSAR persistent scatterer (BGR)
 - L2 and L3 data, continous timeseries
 - Other (climate, hydrological, mining, hydrocarbons, ...)

1. Aggregate data sources into database

- 1. Aggregate data sources into database
- 2. Plausibility check

- 1. Aggregate data sources into database
- 2. Plausibility check
- 3. Apply processing:
 - Reclassify Lidar differences
 - Detect large scale ground motion in PSI data (GroundMotionAnalyzer, Krzepek et al. (in press))
 - Invert timeseries for linear and seasonal components (GrAtSiD, Bedford and Bevis (2018))

- 1. Aggregate data sources into database
- 2. Plausibility check
- 3. Apply processing:
 - Reclassify Lidar differences
 - Detect large scale ground motion in PSI data (GroundMotionAnalyzer, Krzepek et al. (in press))
 - Invert timeseries for linear and seasonal components (GrAtSiD, Bedford and Bevis (2018))
- 4. Classify according to given info
 - Anthropogenic: construction sites, mining, water extraction
 - Natural: soil deformation, subsidence, uplift

- 1. Aggregate data sources into database
- 2. Plausibility check
- 3. Apply processing:
 - Reclassify Lidar differences
 - Detect large scale ground motion in PSI data (GroundMotionAnalyzer, Krzepek et al. (in press))
 - Invert timeseries for linear and seasonal components (GrAtSiD, Bedford and Bevis (2018))
- 4. Classify according to given info
 - Anthropogenic: construction sites, mining, water extraction
 - Natural: soil deformation, subsidence, uplift
- 5. Atlas of ground motions in Hesse

Ground Motion Analyzer

Towards a suitable representation and detection of hotspots

Detailed case studies

Gas reservoir characterization

Influence of subsurface on seasonal motion

Detailed case studies

Gas reservoir characterization

- Influence of subsurface on seasonal motion
- Reservoir characterization

Challenges Processing artifacts and anthropogenic activity

Landslide along road

Wind turbine

 Regions with activity are often close to important infrastructure

Challenges Processing artifacts and anthropogenic activity

DEM artifacts

Unstable or artifact?

Regions with activity are often close to important infrastructure

- Artifacts in densely populated areas
 - Reprocessing of datasets
 - Merging of DEMs and DTMs

-1 ground motion (m)

Manual classification

Preliminary classification of ground motions in pilot regions

Wide spectrum of surface motion

Manual classification

Preliminary classification of ground motions in pilot regions

- Wide spectrum of surface motion
- Regions of uplift and subsidence cluster

Manual classification

Preliminary classification of ground motions in pilot regions

- Wide spectrum of surface motion
- Regions of uplift and subsidence cluster
- Some are clearly identified as anthropogenic
 - Exact source in many cases unknown

Conlusions and Outlook

- Successful verification and integration of several unrelated datasets
- Manual detection ightarrow transition to automatic detection (including new data)
 - ML-enhanced detection workflow
 - Mapping of potential risks
 - Integration of processing results in classification scheme
- Adequate communication to the general public
- Influence of climate change on ground motion related hazard

Ideas for processing or detection methods? \rightarrow rudolf@geo.tu-darmstadt.de

References

Bedford, J., Bevis, M., 2018. Greedy automatic signal decomposition and its application to daily GPS time series. Journal of Geophysical Research: Solid Earth doi:10.1029/2017jb014765. Krzepek, K., Rudolf, M., Homuth, B., Henk, A., Iwaszczuk, D., in press. Raster representation of ground motion service data and automated hot-spot detection, in: 2023 Joint Urban Remote Sensing Event (JURSE), IEEE.

